
Spring 2024: Math 791 Exam 2 Solutions

For this exam, you may use your notes, the Daily Summary, and any homework problem (giving complete details),
but you may not consult any other sources, including: any algebra textbook, the internet, classmates or other
students not in this class, or any professor except your Math 791 instructor. You may not cite any ring theoretic facts
not covered in class or the homework. To receive full credit, all proofs must be complete and contain the appropriate
amount of detail. Please return a copy of your solutions to my mailbox in Snow 405 no later than 5pm
on Monday, March 25.

Each problem below is worth 10 points. Good luck on the exam!

1. Ideals I, J contained in the commutative ring R are said to be comaximal if I + J = R. Prove that if I and J
are comaximal, then IJ = I ∩ J and R/(I ∩ J) is isomorphic to (R/I) × (R/J). Conclude that if R is a PID and
a, b ∈ R have no common divisor, then for all c, d ∈ R, the system of equations x ≡ c mod aR and x ≡ d mod bR has
a solution.

Solution. For the first statement, it follows immediately from the definition of IJ that IJ ⊆ I ∩ J , for any ideals
I, J ⊆ R. If I + J = R, then i + j = 1, for some i ∈ I and j ∈ J . Therefore, if a ∈ I ∩ J , then a = ai + aj. But
ai+ aj ∈ IJ , so a ∈ IJ .

For the second statement, we define ϕ : R → (R/I)×(R/J) by ϕ(a) = (a+I, a+J), for all a ∈ R. It is straightforward
to check that ϕ is a ring homomorphism. Moreover, a ∈ R is in the kernel of ϕ if and only if a+ I = i and a+ J = J
if and only if a ∈ I ∩ J . Thus, the kernel of ϕ is I ∩ J . If we show that ϕ is surjective, then R/(I ∩ J) is isomorphic
to (R/I)× (R/J), by the first isomorphism theorem for rings.

Let (b + I, c + J) be an element of (R/I) × (R/J). Then for i + j = 1 as above, we have b = bi + bj, so that
b+ I = bj + I. Similarly, c = ci+ cj, so that c+ J = ci+ J . Thus,

ϕ(bj + ci) = (bj + ci+ I, bj + ci+ J) = (bj + I, ci+ J) = (b+ I, c+ J),

showing that ϕ is surjective. □

For the final statement, if R is a PID and a, b ∈ R have not common factor, then the ideals aR and bR are comaximal.
Thus, the map ϕ : R → (R/aR)× (R/bR) is surjective. If ϕ(r) = (c+I, d+I), then r ≡ c mod aR and r ≡ d mod dR,
so that r is a solution to the given set of equations. □

2. Let R be a commutative ring. The nilradical of R is the set nilrad(R) := {a ∈ R | an = 0, for some n ≥ 1}. The
elements of nilrad(R) are the nilpotent elements of R. Prove:

(i) Show that nilrad(R) is an ideal of R that is contained in every prime ideal of R. See Homework 20 for the
definition of a prime ideal.

(ii) Suppose c ∈ R is not nilpotent and consider the set S := {1, c, c2, . . . , }. Use Zorn’s lemma to show that
there exists an ideal P maximal with respect to the property that P ∩ S = ∅.

(iii) Show that P from part (ii) is a prime ideal. Hint: If ab ∈ P and a ̸∈ P and b ̸∈ P , consider the ideals P +aR
and P + bR.

(iv) Conclude that the nilradical of a commutative ring is the intersection of all prime ideals in R.

Solution. For (i), suppose a, b are nilpotent, say an = 0 = bm. Then

(a+ b)n+m−1 =

n+m−1∑
i=0

(
n+m− 1− i

i

)
an+m−1−ibi.

Here
(
n+m−1−i

i

)
means 1R added to itself

(
n+m−1−i

i

)
times. In each term an+m−1−ibi, either n +m − 1 − i ≥ n or

i ≥ m, and thus, each of these terms equals zero. Therefore a + b is nilpotent. In addition, suppose r ∈ R. Then
(ra)n = rnan = 0, so ra is nilpotent. Thus, the nilradical of R is an ideal. Moreover, if a is in the nilradical of R,
and P ⊆ R is a prime ideal then an = 0 ∈ P , for some n ≥ 1. An easy induction shows that if cn ∈ P , then c ∈ P .
Thus, a ∈ P , so that the nilradical of R is contained in every prime ideal P ⊆ R.

For (ii), Let X denote the set of ideals J contained in R such that J ∩ S = ∅. Note that X is non-empty since
⟨0⟩ ∩ S = ∅. If we partially order X by inclusion, we obtain a partially ordered set. Let C = {Jα}α∈A be a chain in
X. We have seen in class that J0 =

⋃
α Jα is an ideal of R. Moreover, J0 ∩ S = ∅, since Jα ∩ S = ∅, for any element

in the chain. Thus J0 ∈ X and J0 is clearly an upper bound for C. Thus, by Zorns Lemma, there exists an ideal
P ⊆ R maximal with respect to the property that P ∩ S = ∅.
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For (iii), suppose ∈ P , yet neither a nor b belongs to P . Then P + ⟨a⟩ and P + ⟨b⟩ both properly contain P . By the
maximality of P , neither of these ideals belong to X. Thus, (P + ⟨a⟩) ∩ S ̸= ∅ and (P + ⟨b⟩) ∩ S ̸= ∅. We therefore
have equations cr = p1 + r1a and ct = p2 + r2b, for c

r, ct ̸∈ P and pi ∈ P and ri ∈ R. Therefore

crct = p1p2 + ab(r1p2 + r2p1) + r1r2ab.

But the left hand side of this equation belongs to S and the right hand side belongs to P , contradiction. Therefore,
either a ∈ P or b ∈ P , and thus P is a prime ideal.

For (iv), part (iii) shows that if c ∈ R is not nilpotent, then there exists a prime ideal P ⊆ R not containing c. Thus
the intersection of all prime ideals in R is contained in the nilradical, and hence by part (i), equals the nilradical of
R. □

3. Let R be an integral domain. In what follows, a, b, c, d ∈ R will be non-zero, non-unit elements. Given a, b ∈ R,
d ∈ R is said to be a greatest common divisor, or GCD, of a and b if the following conditions hold:

(i) d | a and d | b
(ii) Whenever e | a and e | b, then e | d.

Use this definition to prove the following statements. GCDs are assumed to exist for any pair of non-zero, non-units.

(i) GCDs are unique up to a unit multiple. Henceforth, we will refer to the GCD of a and b.
(ii) Show that dc is the GCD of ac and bc, for d the GCD of a and b. Use this to show that if d is the GCD of

a and b, then 1 is the GCD of a
d
and b

d
.

(iii) Prove that if the GCD of a and b is 1 and a | bc, then a | c.

Solution. For (i), if d and d′ are GCDs of A and b, then d | d′ and d′ | d, so d and d′ are associates.

For the first statement in (ii), let e = GCD(ac, bc). Then c | ac and c | bc, so c | e. Thus, e = cd, for some d ∈ R.
Write ac = eu and bc = ev. Then ac = dcu, so a = du. Similarly, b = dv. Thus, d | a and d | b. Now suppose f | a
and f | b. Then fc | ac and fc | bc, therefore, fc | e. Since e = dc, we have f | d. Thus, d is the GCD of a and b,
which gives what we want.

For the second statement in (ii), we have

d = GCD(a, b) = GCD(d · a
d
, d · b

d
) = d ·GCD(

a

d
,
b

d
).

Dividing both sides of this last equation by d gives what we want.

For (iii), c = c · 1 = c · GCD(a, b) = GCD(ac, bc). But a | ac and a | bc, so a | GCD(ac, ab) = c, which is what we
want. □

4. Suppose R is a UFD. Show that the GCD of any two non-zero, non-unit elements exists.1 Then define the concept
of least common multiple and conclude that for non-zero, non-units a, b ∈ R, GCD(a, b) · LCM(a, b) = ab.

First, let a, b ∈ R be non-zero non-units. Factoring each of these elements into a product of primes, we may write
a = upe11 · · · perr and b = vpf11 · · · pfrr , where each pj is prime, u and v are units, and ei, fi ≥ 0. Thus for example, if

pc ∤ a, then ec = 0. Set d := p
min{e1,f1}
1 · · · pmin{er,fr}

r , so that d | a and d | b. Note, if each min{ei, fi} = 0, then we
take d = 1. We now show that d is a GCD of a and b. For this, we have to show that if c divides both a and b, then
c divides d. Suppose c is such an element. We can write a = ch and b = ck, for k, h ∈ R. Let ũqg11 · · · qgtt be a prime
factorization of c, where ũ is a unit. Then, upe11 · · · perr = ũqg11 · · · qgtt ·h. By uniqueness of factorization, each qj must
be a unit multiple of some pi and gj ≤ ei. By reindexing the qj ’s we may assume qi = uipi, for 1 ≤ i ≤ t, and thus
gi ≤ ei, for 1 ≤ i ≤ t. Since c | b, each gi ≤ fi. It follows that each gi ≤ min{ei, fi}, and thus c | d, which is what we
want.

To define the LCM of a and b in a way that is analogous to the definition of GCD in Homework 17, we say that h is
an LCM of a, b if: (i) a | h and b | h and (ii) If a | k and b | k, then h | k. Essentially the same proof in the paragraph

above shows that h := p
max{e1,f1}
1 · · · pmax{er,fr}

r is an LCM of a and b. Part (iii) now follows from (i) and (ii) since

p
min{ei,fi}+max{ei,fi}
i = pei+fi

i , for all i. □

5. Let R be a commutative ring. Describe with proof the two-sided ideals in S := Mn(R). Hint: Consider the
matrices Eij that have 1 in the (i, j)-entry and zeros elsewhere.

Solution. We show that J is a two-sided ideal of R if and only if there is an ideal I ⊆ S such that J = Mn(I). If
J = Mn(I) for some two-sided ideal I ⊆ S, then clearly J is a two-sided ideal of R, since for any A ∈ R and B,C ∈ J ,
the entries of AB, BA and B + C belong to I. For the converse, suppose J ⊆ R is a two-sided ideal. Let I denote

1Interesting example: Let A denote the set of all polynomials in Q[x] whose constant term is in Z. Then any two non-zero,
non-units in A have a GCD, but A is not a UFD.
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the set of elements a ∈ R such that a is an entry of a matrix belonging to J . We need to show that I is a two-sided
ideal of R and Mn(I) = J .

We first make some observations. We let Eij be the matrix with 1 in the (i, j) entry and zeros elsewhere. It is easy
to check that Eij · Ekt = 0, if j ̸= k and Eij · Ekt = Eit when j = k. Now, for any A ∈ R, EijA is the matrix whose
ith row is the jth row of A, and all other rows are zero. In other words, EijA = aj1Ei1 + · · · + ajn · Ein. Thus,
EijAEkt = ajk · Eit, which belongs to J , if A ∈ J .

Suppose a ∈ I. Then a is the (i, j)th entry of a matrix A in J , and thus, aijEij = EiiAEjj belongs to J . Thus, for
any r ∈ S, rEii · aEij = raEij and aEij · rEjj = arEij belong to J , and therefore ra ∈ I and ar ∈ I.

Now suppose a, b ∈ I. Then by what we have previously shown, aEuv and bEst belong to J , for some u, v, s, t. Thus,
bEst · Etv = bEsv ∈ J . Therefore Eus · bEsv = bEuv belongs to J , and thus (a+ b)Euv is in J . Therefore a+ b ∈ I,
so I is a two-sided ideal of R.

To finish the proof, we first note that by definition J ⊆ Mn(I). For the converse, suppose B = (bij) ∈ Mn(I). Then,
for each (i, j) there exists a matrix Aij with bij as an entry, say, the (u, v)th entry. Then EiuAEvj = bijEij ∈ J . It
follows that B = Σi,jbijEij ∈ J . Thus, J = Mn(I), which completes the proof. □

6. Show that any UFD satisfies the ascending chain condition on principal ideals.

Solution. Suppose a, b ∈ R are non-zero, non-units and ⟨a⟩ ⊊ ⟨b⟩. Write a = upe11 · · · perr , with each pi prime, ei ≥ 1

and u a unit. Then we have a = bc, with c not a unit. It follows that we may assume b = vpf11 · · · pfrr , with each
fi ≤ ei and strict inequality for at least one i, and v a unit. It follows that there cannot be a chain of principal
ideals above ⟨a⟩ with more than e1 + · · ·+ er strict containments. This implies that R satisfies the ascending chain
condition on principal ideals. □

7. Consider the sequence of polynomial rings Q[x] ⊆ Q[x
1
2 ] ⊆ Q[x

1
4 ] ⊆ · · · and set R :=

⋃
n≥1 Q[x

1
2n ]. Prove that if

f ∈ R and the constant term of f is 0, then f is not an irreducible element in the integral domain R. Conclude that
no element in R with zero constant term can be written as a product of irreducible elements.

Solution. If for each n ≥ 0, we set Rn := Q[x
1
2n ], then we have R0 ⊆ R1 ⊆ · · · and R =

⋃
n≥0 Rn. We first note that

the reason the conclusion works is that even x = x
1
2 · x

1
2 is not irreducible. But then the same applies to all powers

x
1
2n of x.

Now, take f ∈ R. Then f ∈ Rn, for some n, so we may write f as a polynomial in x
1
2n with coefficients in Q.

If f has zero constant term, then f = arx
r
2n + ar−1x

r−1
2n + · · · + a1x

1
2n , with each aj ∈ Q. Now, for 1 ≤ t ≤ r,

x
t

2n = x
1

2n+1 · x
2t−1

2n+1 . Thus, we may factor x
1

2n+1 from each term and write f = x
1

2n+1 · g for some g ∈ Rn+1 ⊆ R
with zero constant term. Note that g is not a unit in R, else there exists h ∈ R such that gh = 1. However, h ∈ Rs,
for some s ≥ 1, so that if q ≥ max(s, n + 1), then g, h ∈ Rq and 1 = hg in Rq. But Rq is a polynomial ring in the

variable x
1
2q , so the only units in Rq are constants. Thus g is not a unit in R, so that no f ∈ R with constant term

0 is irreducible.

The second statement now follows immediately from the first, since the only possible irreducible elements in R
have non-zero constant term, and the product of elements in R with non-zero constant term has non-zero constant
term. □

8. This problem is a generalization of problem 1 on Homework 16. Here we create a ring of fractions when the ring
we start with is not necessarily an integral domain. Let R be a commutative ring and S ⊆ R a multiplicatively closed
set, i.e., 1 ∈ S, 0 ̸∈ S and s1s2 ∈ S, whenever s1, s2 ∈ S. Let Q denote the set of ordered pairs (a, s) ∈ R×S. Define
(a, s) ∼ (a′, s′) if and only of there exists s0 ∈ S such that s0(as

′ − a′s) = 0.

(i) Show that ∼ is an equivalence relation. Denote the equivalence class of (a, s) by a/s.
(ii) Define a/b + c/d := (ad + bc)/bd and a/b · c/d := ac/bd. Prove that these operations are well-defined, and

then show that RS , the set of equivalence classes, forms a commutative ring. RS is often called R localized
at S.

(iii) Show that the natural map ϕ : R → RS given by ϕ(r) = r/1 is a ring homomorphism, and then describe the
kernel of ϕ.

(iv) Give an example such that the map ϕ : R → RS in part (iii) has non-zero kernel.
(v) What are the units in RS?

Solution. For (i), the relation is clearly reflexive and symmetric. Suppose (a, s) ∼ (a1, s1) ∼ (a2, s2). Then there
exists s′, s′′ ∈ S such that s′(as1 − a1s) = 0 and s′′(a1s2 − a2s1) = 0. Multiplying the first equation by s′′s2 and the
second equation by s′s and adding gives: s′′s1s

′(as2 − a2s) = 0, showing (a, s) ∼ (a2, s2).
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For (ii) we just show addition is well defined. The proof that multiplication is well defined is similar, and that we have
a commutative. ring follows easily from the fact that R is a commutative ring. Suppose a/b = a′/b′ and c/d = c′/d′.
Then there exist s, s′ ∈ S such that s(ab′ − a′b) = 0 and s′(cd′ − c′d) = 0. Multiplying the first equation by s′dd′

and the second equation by sbb′, and adding gives ss′{(dd′ab′ + cd′bb′) − (dd′a′b + c′dbb′)} = 0, which shows that
(ad+ bc)/bd = (a′d′ + b′c′)b′d′, which is what we want.

For (iii),that ϕ is a ring homomorphism follows easily from the definitions. Now r ∈ R belongs to the kernel of ϕ if
and only if r/1 = 0/1 in RS if and only if s(r · 1− 0 · 1) = 0 for some s ∈ R if and only if sr = 0, for some s ∈ S.

For (iv) consider R = Z/6Z and S = {0, 1, 2, 22, ...} = {1, 2}. Then 2 · 3 = 0 in R, showing that 3 is in the kernel of
ϕ, for ϕ as in (iii).

For (v), we note that a/s ∈ RS is a unit if and only if a/1 is a unit. Thus, we determine when a/1 is a unit. We claim
a/1 is a unit in RS if and only if there exist b ∈ R and s ∈ S such that sba ∈ S. To see this, suppose a/1 ∈ RS is a
unit. Then there exists b/s1 ∈ RS such that (a/1) · (b/s1) = 1/1. Thus there exists s ∈ S such that s(ab − s1) = 0.
It follows that there exists s ∈ S and b ∈ R such that sba ∈ S. The converse is similar. □

9. Let R be a UFD with quotient field K. Suppose S ⊆ R is multiplicatively closed. Show that RS is a UFD.

Solution. We first note that since R is an integral domain, a/s = b/s′ in RS if and only if s′a = sb in R. Now note
that since any element in R is a product of prime elements, and any element in RS is a unit times a/1, for a ∈ R, it
suffices to show that if p ∈ R is a prime element, and p does not divide any element in S, then p/1 is a prime element
in RS . (Note: If p | s, for s ∈ S, then s is a unit in RS , and therefore, p is a unit in RS). For this, suppose p/1
divides (a/s) · (b/s′) in RS . Then (p/1) · (c/s1) = (a/s) · (b/s′) in RS . Thus, in R, pcss′ = abs1, so that p divides
abs1s2. Since s1s2 ∈ S, p ∤ s1s2 so p | a or p | b, say a = pc, for c ∈ R. Then a/s = (p/1) · (c/s) showing that p/1
divides a/s in RS , so p/1 is a prime element. □

10. Let k be a field and set R := k[[x]], the formal power series ring in x over k. Using the definition given in
Homework 18, show that R is a discrete valuation ring with quotient field K, where K can be identified with the
set of all formal expressions,

∑∞
n=−n0

αnx
n, where n0 ≥ 0 and each αn ∈ k. Such an expression is called a Laurent

power series. Hint: Show that f(x) ∈ R is a unit if and only if its constant term is non-zero.

Solution. Suppose f(x) =
∑∞

n=0 anx
n in R is a unit. Then there exists g =

∑∞
n=0 bnx

n such that fg = 1. In

particular, a0b0 = 1, so a0 ̸= 0. Now suppose a0 ̸= 0. We seek g =
∑∞

n=0 bnx
n such that fg = 1. Such an element

exists, if and only if we can solve the following infinite system of equations over k, thinking of the bi as elements to
be determined.

a0b0 = 1

a0b1 + a1b0 = 0

a0b2 + a1b1 + a2b0 = 0

...

a0bn + · · ·+ anb0 = 0

...

Since a0 is not zero, we can solve the first equation for b0, i.e., we can take b0 = a−1
0 , since k is a field. Since b0 = a−1

0 ,
if we use this in the second equation, we see that we can solve for b1, as an element in k. Assume by induction, that
we have determined b0, . . . , bn−1 from the first n equations. Then from a0bn + · · · + anb0 = 0, we can solve for bn.
Thus, the system of equations above has a solution in k, so that f has an inverse in R.

We next note that for f ∈ R, x | f if and only if the constant term of f is zero, which by what we have just shown,
happens if and only if f is not a unit. So, if x | fg, for f, g ∈ R, one of f or g is not a unit, and thus has zero constant
term, and thus x | f or x | g. Therefore x is a prime element. Moreover, if f ∈ R and f =

∑∞
n=1 anx

n, let n0 be
the least non-negative integer such that an0 ̸= 0. Therefore, we can write f = uxn0 , with u ∈ R a unit (since the
constant term of u is an0). This shows that, up to a unit multiple, x is the only prime element in R. Moreover, if
I ⊆ R is a non-zero proper ideal, then, every element in I has the form vxn, for a unit v ∈ R and n ≥ 1. If we take
g such that n is least among the elements of I, then ⟨g⟩ = I, showing that R is a PID and therefore a DVR.

Now, suppose a/b ∈ K, with a, b ∈ R. Then a = uxr abd b = vxs, with u, v ∈ R units, and r, s ≥ 0. Then
a/b = uv−1xr−s. Write uv−1 = h(x) =

∑∞
n=0 hnx

n as an element of R, so that

a/b = xr−s · h(x) =
∞∑

n=0

hnx
n+r−s =

∞∑
n=r−s

h′
nx

n,
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where each h′
n = hn−(r−s). Thus, every element in K is a Laurent power series. Conversely, any Laurent series

f =
∑∞

n=−n0
αnx

n, where n0 ≥ 0 can be written as f = x−n0u, where u ∈ R is a unit (and we assume a−n0 is the

first non-zero coefficient of f). Thus, f ∈ K, so that K is the set of Laurent power series. □

Bonus Problems. Five points each. Bonus problems must be almost completely correct to receive any bonus points.

BP1. Suppose R is an integral domain and S ⊆ R is a multiplicatively closed set such that each element in S is
a finite product of primes. Let T denote the set of prime factors of the elements of S and assume further that no
element of R is divisible by infinitely many elements in T . Prove that R is a UFD if RS is a UFD.

Solution. This problem is a converse to Problem 9. The difficulty in reversing the direction of the argument in
Problem 9 above is the following. If q ∈ R is such that q/1 is a prime element in RS , then q need not be a prime
element in R. For example, if R = Z and S := {1, 2, 22, 23, . . .}, then 6 is a prime element in RS , but it is not prime in
R. The point is, that given such a q, we need to factor out all of the elements from S (or prime factors of elements of
S) that are factors of q and this requires some sort of finiteness condition. So, assume that no element in R is divisible
by infinitely many p in T . Let q ∈ R be such that q/1 is a prime element in RS . Choose the principal ideal ⟨p⟩ so that
p is not divisible by any pi ∈ T and ⟨q/1⟩ = ⟨p/1⟩ in RS . This is possible once we divide out from q the finitely many
pi ∈ T that might be factors of q. We now note that p is a prime element in R. Suppose p|ab, for a, b ∈ R. Then
since p/1 is a unit multiple of q/1 in RS and q/1 is a prime element, p/1 is a prime element in RS . Thus, p/1 divides
a/1 (say). Thus, in R, we have an equation sa = pr, for r ∈ R and s ∈ S. Now, let pi be a prime factor of s. If pi
divides p, then pi divides q, which is not the case, since we have removed all such pi to obtain p. Thus, pi divides r.
Similarly, every prime element in T that divides s divides r, so s divides r. Cancelling s from the equation sa = pr,
we get a = pr′, for some r′ ∈ R, which shows that p divides a. Thus, p is a prime element of R. Now, suppose a ∈ R
is a non-zero, non-unit element. By hypothesis, a is divisible by at most finitely many primes in T , say a = a0b,
where a0 is a product of primes from T and no prime in T divides b. In RS , we can write b/1 as uq1/1 · · · qh/1,
where u ∈ RS is a unit and each qi/1 is a prime in RS . From the preceding, we may write each qi/1 = ti · (pi/1),
where pi ∈ R is prime, and ti ∈ RS is a unit. Thus, gathering units, we have b/1 = v · (p1/1) · · · (ph/1) in RS , where
v ∈ RS is a unit. Thus, v = s/s′, with s, s′ ∈ T . Therefore, in R, s′b = sp1 · · · ph. Since no prime factor of s′ divides
any pi, all of the prime factors of s′ divide s. Thus, we may cancel s′ from both sides of this last equation to obtain
b = s′′p1 · · · ph, showing that b is a product of primes. It follows that a is a product of primes, and therefore, R is a
UFD. □

BP2. Let k be a field and R the polynomial ring in countably many variables over k. Prove that R is a UFD.

Solution. Set R0 := K and Rn = K[x1, . . . , xn], for all n ≥ 1. By induction on n, and the theorem from class, each
Rn is a UFD, since Rn+1 = Rn[xn+1]. We also have R =

⋃
n≥1 Rn. We make the following claim. If p ∈ Rn is

a prime (equivalently, irreducible) element, then p is a prime element in R. Assuming this holds, let f ∈ R be a
non-zero, non-unit element. Then f ∈ Rn for some n. Thus, in Rn, f = p1 · · · pr, a product of prime elements in Rn.
By the claim, each pi remains prime in R. Therefore, f is a product of primes in R, showing that R is a UFD.

Suppose p ∈ Rn is prime and p | ab, for a, b ∈ R. Thus, ab = pc, for c ∈ R. We may choose m sufficiently larger than
n so that p, a, b, c ∈ Rm. By a theorem from class, p is prime in Rn[xn+1]. Iterating this, p is prime in Rn[xn+1, xn+2].
Inductively, we have that p is prime in Rn[xn+1, . . . , xm] = Rm. In Rm we have ab = pc, so p | a or p | b in Rm, say
p | a. But then clearly, p | a in R, showing p is prime in R, which completes the proof. □

BP3. Let R be a commutative ring and f(x) ∈ R[x]. Show that f(x) is a unit in R[x] if and only if its constant
term is a unit and all other coefficients of f(x) are nilpotent. Hint: In any commutative ring, what sort of element
is n+ u, if n is nilpotent and u is a unit?

Solution. We first note that if A is a commutative ring and n ∈ A is nilpotent and u ∈ A is a unit, then n+u is a unit.
One way to see this is to note that if M is a maximal ideal, then M is a prime ideal, and thus by Problem 2, n ∈ M .
If n + u ∈ M , then u ∈ M . But this is a contradiction, since no proper ideal contains a unit. Thus, n + u is not
contained in any maximal ideal, and therefore must be a unit. More computationally: First consider n+ 1. Suppose
nr = 0. Without loss of generality, we may assume r is odd. Then 1 = 1 + nr = (1 + n)(1 − n + n2 − · · · + nr−1),
showing that 1 + n is a unit. To see that u+ n is a unit, note that u−1n is nilpotent and therefore, 1 + (u−1n) is a
unit. Therefore, u · (1 + (u−1n)) = u+ n is a unit.

Now, we write f(x) = anx
n + · · · + a0. Suppose a0 is a unit and ai is nilpotent for all remaining coefficients. Then

for each i ≥ 1, aix
i is nilpotent, and therefore anx

n + · · ·+ a1x is nilpotent. By the paragraph above, f(x) is a unit.

For the converse, we prove by induction on n that if f(x) is a unit in R then a0 is a unit and each ai is nilpotent for
1 ≤ i ≤ n. If n = 0, there is nothing to prove. Suppose f(x) is a unit. Then there exists g(x) = bmxm + · · ·+ b0 such
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that f(x)g(x) = 1. It follows that a0b0 = 1, so a0 is a unit. We now look at the resulting system of equations:

a0b0 = 1

a0b1 + a1b0 = 0

...

anbm−2 + an−1bm−1 + an−2bm = 0

anbm−1 + an−1bm = 0

anbm = 0.

If we multiply the second to last equation by an, we get 0 = a2
nbm−1 + an−1anbm = a2

nbm−1. If we now multiply the
third from last equation by a2

n, we get

0 = a3
nbm−2 + an−1a

2
nbm−1 + an−1a

2
nbm = a3

nbm−2.

Thus, inductively we have ajbm−j+1 = 0, for all j. It follows that am+1
n b0 = 0. Since b0 is a unit, an is nilpotent.

Therefore −anx
n is nilpotent. Since f(x) is a unit, f(x)+(−anx

n) is a unit. By induction, a1, . . . , an−1 are nilpotent,
which is what we want.

Here’s a more conceptual proof of this last fact. Suppose f(x) ∈ R[x] is a unit. Clearly the constant term of f(x)
is a unit in R. Let P ⊆ R be a prime ideal. From Homeworks 19 and 20, R[x]/P [x] is isomorphic to (R/P )[x], and

hence an integral domain. Now, f(x), the image of f(x) in R[x]/P [x], is still a unit. But in an integral domain, a

unit clearly has degree zero. Thus, all of the non-constant coefficients of f(x) are zero in R/P , and therefore, all of
the non-constant coefficients of f(x) belong to P . Since this holds for all prime ideals P ⊆ R, these coefficient are
nilpotent, by Problem 2. □

BP4. Let R be the ring in problem 7 and S ⊆ R be the multiplicatively closed set of polynomials with non-zero
constant term. Prove that the ring RS has no irreducible elements.

Solution. If f
s
∈ RS is non-zero and a non-unit, then f ∈ R has constant term 0. Since s is a unit in RS ,

f
s
is

irreducible if and only if f
1
is irreducible. By Problem 7, f is not irreducible in R, in fact, f = x

1
2n · g, with g ∈ R

having constant term 0 and some n ≥ 1. Thus, f
1
= x

1
2n

1
· g
1
, showing that f

1
is not irreducible in RS . □

Aside. In the literature, irreducible elements are sometimes called atoms, for obvious reasons. An integral domain
in which each non-zero, non-unit be factored (not necessarily uniquely) as a product of a finite number of atoms
(irreducible elements) is called an atomic domain. An integral domain without any atoms is then called an anti-
matter integral domain. Thus, the ring RS in BP4 is an anti-matter integral domain. This latter designation has
absolutely nothing to do with physics, but was probably coined for the amusement of mathematicians who study
such rings.
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